＂Heart to Heart＂は

つねにお客さまの視点からものごとをすすめる
つまゆマーケットオリエンデッドなビジネスを通じて
社会に貢献したいと願う私たちの

－1．安全して関するで注意

－で使用にあたつて
1．で使用に際して「取扱説明書」をよくお読みの上，正しく安全にで使用下さい。
2．弊社の製作範囲を無断で改造されますと，事故の原因となり危険です。絶対に行わないで下さし
3．取扱気体は空気です。空気以外の原縮には使用しないで下さい。事故や故障の原因となります。
4．圧縮空気を直接吸引したゆ，呼吸器系の機器に使用することは絶対に避けて下さい。呼吸障害を起己すおそれがあります。
－設置場所について
1．本機は屋内設置用として製作しています。屋外及び半屋外で使用することはできません
2．可燃性ガス，爆発性カス等を含んた買現へ諠のると，電気火花等による引火で爆発するおそれがあります。
3．有毒ガス，，腐倉性ガス等を含んだ珸境へ設置すると，閴滑剤の劣化やや部品の腐食の原因となります
4 密閉された場所に設置すると，叶出温度の上昇や機器輠の寿命低下につながゆます。必す吸排気口を設けて換気して下さい。

コベルコ・ココゴレリサ矅
http：／／www．kobelco－comp．co．jp

－䊮神戸製鋼所

203－5496－0011（FAX． $03-5496-019)$

■東 北

■北関東

■北 陸

■中部

中部支店 $\bar{T} 451.045$
－近

蜔 \times 胃

四 国

■九 州

省エネルギー対策を通じて，低炭素社会の実現に貢献します。

昨今，環境破壊がもたらした環境問題の一端である地球温暖化を世界的な規模で食い止めるために

さまざまな対策がとられています。
私たちコベルコグループは，空気圧縮機メーカーのパイオニアとして，
使用エネルギーを最小限に抑えるために，
さまざまな技術を確立してまいりました。
その技術をお客様に，より的確に生かしていただくため
省エネ機器，システム全体の効率化など，
省エネルギーを図るための提案をさせていただきます。
お客様のエアシステムの省エネルギー対策を通じて，
省エネ・環境改善•低炭素化と社会への貢献をめざします。

日本の総電力量の5\％

現在，国内で使用されてい るコンブレッサの総消費電かは，国内で消貝される総電力量の5\％にあたりま す。コンブレッサの消費雨力を 10% 削淢すると，総電力量の約 0.5% の削減 につながります。 量：8．894億kWh（電気事業連合会秋 445 拥WW

コンプレッサのランニングコスト

〈計算条件〉油洽式75kW：6000h／年15円 FkWh 10 年間

コベルコの背工ネ対策
コベルコは，コンブレッサ使用のお客様への省工不対策として，省エネセミナー，省エネ診断，最新の省エネ機器・システムの提案などを実施しております。これにより，使用エネルギーを最小限に抑え，CO2削減，地球温暖化防止に頁献します。

「省エネ法」改正の観要

「改正省エネ法」2013年5月31日公布 東日本大震災後の電力需給の逼迫に直面し，従来からのエネルギー合理化の強化に加え，電力需給バランスを意識したエネルギー管理が求められています。また，エネルギー消費量 が特に大きく増加している業務•家庭部門において，住宅•建築物や設備機器の省エネ性能の向上といった対策を強化する必要があり，こうした背景から省エネ法が改正されました。

－省エネ推進の流れ

1947年－熱管理規制制定	
1951年熱管理法施行	
	「新•国家エネルギー戦略」を公表 2030年までた，さらに30\％エネルギー効率の改善を目指す
1997年－京都識定冓採択	
1998年 地球温暖化対策推淮 法（温対法）制定	2009年 $\begin{aligned} & \text { 温暖化ガス排出削減の中期目標発表 } \\ & \text { 2020年時点対 } 5 \text { 年比で15\％㷙減 }\end{aligned}$
 第一種指定事業者の中長䐓計画書提出義務， エネルギー管理士資格者の参画必要	

改正の主をがイント

\square電力の需給バランスをはかるためには電力ピーク対策が重要な課題となることから，電気需要の平準化の推進に関する措置 が加えられました。
（1）電気需要平準化評価原単位の設定
電気需要平準化時間帯に電気使用量を削減した場合，電気使用量を1．3倍して算出することにより，エネルギー消費原単位に比べて電気

（2）電気需要平準化時間帯の設定（夏季：7～9月，冬季：12月～3月の8時～22時）
（3）工場等における電気の需要の平準化に資する措置に関する事業者の指針の策定
指定されました。

トップランナー制度の対象として「三相誘導電動機」と「電球形LEDランプ」を追加 コンブレッサにも使われている「三相誘導電動機」 がトップ ランナー制度の対象として新たに加わりました。

露任 エネルギー管理統括者（役員クラス） エネルギー管理企画推進者

提出 定期報告書，中長期計画書
目標中長期的にみて年平均 1% 以上のエネルギー消費原単位 または電気需要平準化原単位の低減
〈特定事業者の取り組むべき事西〉

高い省エネ効柰が期待されるトップランナーモータ

「トップランナー制度」とは省エネルギー基準を定める方式の一つであり，日本国内に出荷される製品 の省エネルギー基準を現在商品化されている最高のエネルギー消費効率以上に定める方式のことです。 モータにおいては2015年度からIEC規格におけるIE3Vベルをトッブランナー基準として適用し「省エネ法」の特定機器に追加されることとなりました。

①トップランナーモータの設定

鏟業用モー夕による年間の消費電力量は，産業部門の消費電力量の約 75% を占めると推計されており，多量のエネ ルギーを消費する機器となっています。また，国内で使用されているモータの97\％がIE1（標準効率）レベルであり， トップランナー化によりIE3（ブレミアム効率）に置き換えられたとすれば，極めて大きな省工不効果が期待できます。

－（2）モータ高効率化に関する主要各国の動向

モータ高効率化は世界的な流れで，主要な国々では運くとも2017年頃までにはIE3レベルの効率が規制值として求められる模様です。
〈各国における規制の時期と適用される効率クラス〉2013年9月現左

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
丰 米 国				EISA：エネルギー独立安全保障法10／12～NEMA Premium（IE3）規制開始						
$\begin{aligned} & \text { 区欠州 } \\ & \text { EU227 } \end{aligned}$								IE3 or IE2＋インパー夕駆動規制開始$15 / 1 \sim 7.5 \mathrm{kW以上}$ \qquad		
00° ：皓 国	（1）			$10 / 1 \sim 15 \mathrm{kW以上}$$10 / 7 \sim 0.75 \mathrm{kWW上}$				段階的にIE3規制開始 $15 / 1 \sim 37 \mathrm{~kW} \sim 200 \mathrm{~kW}$$116 / 1 \sim 15 \mathrm{~kW} \sim 37 \mathrm{~kW}$		
中 国	$\begin{aligned} & \text { エネルギー効率標識実施規則 } \\ & \text { '07/7~ GB3級 (標準効率 }+\alpha \text {) } \end{aligned}$			$11 / 7 ~ G B 2$G級（IE2＋α ）規制開始$12 / 9 ~$ 新GB3級（IE2）規制開始						
（2）ブラジル										
－日 本								＇15／4～1E3でのトップランナー規制開始予定		

（3）対象範囲

出力		電	周洨效	使用の孏頪
0．75～375kW	2检，4检，6極	1000V以下	$50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ ， 50／60Hz	S1（連続定格）または80\％以上の 貝荷時間を持つS3（反復使用）
【主な除外機喠】	特多絶緑 デルタスタ一始動方式，舶用モータ，液中モータ，防懪形モ一タ，ハイスリッフモータ，ゲートモータ， キャンドモータ，楥低温買境下で使用するもの，インバータ駆動專用設計で他力通風形のもの			

お客様とともに，省エネ対策を推進

コベルコは，お客様に環境問題，省エネについてもっと知っていただくため，省エネに関する情報提供としての「省エネセミナー」をはじめ，お客様の工場のエネルギー使用量などを調査する「省エネ診断」，診断データに基づき実際の機器・システムの導入にともなう「省エネ改善」など，お客様の工場全体の省エネ対策のお役に立てるよう，窓口商社やサービス指定工場と一体となった体制を整えております。

お客樣からのご要望により，全国各地で，コベルコ窓口商社やサービス指定工場による「省エネセミナー」を開催しており ます。さまぜまな資料を用いて，環境問題，環境関連法規，工場の具体的な省工ネ対策など，幅広くで説明いたします。

コンプレッサに関わる判断基準
）管理：使用端圧力及び吐出量の見直しを行し，管理標準を設定し，電動機の負荷を低減する。 2）保守及び点検：流体の漏えいを防止し，抵抗を低減するように保守及び点検に開する管理標準 を設定し，これに基づき定期的に保尔及ひ点検を行う。

－供給圧力の低圧化

がージ断	フスル坔（mm）				
	0.2	0.4	0.6	0.8	1.0
0.49 MPa	1.87	8.10	12.46	31.14	49.20
0.59 MPa	2.18	9.44	14.52	36.30	57.35
0.69 MPa	2.49	10.78	16.58	41.46	65.51
0.79 MPa	2.80	12.12	18.65	46.62	73.6

－配管の適正化
配管サイズの見直し，ルーブ化等により，圧力損失を削減し空気の安定供給が可能になります。

$\begin{aligned} & \text { 配筑 } \end{aligned}$	A	15	20	25	40	50	65	80	100
	в	1／2	$3 / 4$	1	11／2	2	$21 / 2$	3	4
経济 配管	$\begin{gathered} \text { 法晒 } \\ \mathrm{Nm}^{2} / \mathrm{min} \end{gathered}$	0.5	1.0	1.5	4.0	7.0	13	20	30
	4P／100m	0.038	0.032	0.021	0.017	0.014	0.014	0.013	0.007
最大		1.8	3.1	5.2	11	15.4	22.3	31.4	53.5
	4P／100m	431	0.284	0.210	0.106	0.063	0.035	0.028	0.026

メンテナンスの適正管理 メンテナンス基準を超過した部品は， ロスを発生させ余計な動力を消費します。 により省工ネを図ることができます。
－吸込フィルルタの部品劣化により発生するムダなま

現状把握から具体的な改善方法までトータルにサがート

効果的な省エネ推進には，まず現状をしつかり把握すること。そして具体的な対策を立て，実践することが必要 です。コベルコはお客様のご要望に応じて，効果的な省エネ改善を提案します。

現状把握

省エネ改善の実践

診断メニュー お客様のニーズに応じた3つの診断メニューをご用意

－覍エネ診断の流れ

STE and

事前打合せと現地检植 STEP4
テ－夕解析 STEP5報告害作成 結果報告とで提案 $\xrightarrow{ }$ STEP6 EP6

省エネプラン エネルギー使用状況を「見える化」し，分かりやすく効果的に省エネを提案測定データを解析し，現状を正しく把握。お客様二ーズに対応した省エネマスタープランを具体的に提案させていただきます。

兠工不効果例

精密機械メーカーA社様 コベルコ油洽式スクリココンプレッサ6台使用。実測データに基づきVSI310W（インバータ機）台数制御盤を道入した場合のシミュレーション。

液晶画面メーカーB社様他社オイルフリースクリココンプレッサ5台使用。
央則データに基づき，古くなった ALE160W－v（インバータ機）にリアフレースし， さらに台数制御盤を導入した場合のシミュレー

診断実績

〈コ（1）	

〈省工ネ診断実績例〉

業教		間定内翏				
					［	cemat
美而工芸		スタリュ給油式 $15 \mathrm{~kW} \times 1$ 台		35.579	533，685	19.7
			レシーパタンク＋ 	521．000	5，731，000	237.1

無慗	$\begin{aligned} & \text { 主鹳 } \end{aligned}$	剂定内眇	题喺内閈			
					（1）	comatite
食品	的線	スタリフォオイルフリリー $37 \mathrm{KWW} \times 6 \mathrm{~A}$		156，908	1，725．993	58.8
唒車		 175 kW Wt $\times 4$ 4		3，361，000	36，97，000	1529.3

最適省エネ機器・システムの提供

省エネ診断によって明らかになったエネルギーのムダは，新たな省エネ機器の導入と，それらの機器を活かす システムによって解消できます。コベルコでは，各種コンプレッサや台数制御機器など，省工ネのための最適機器と システムを提案。その具体的な使い方から省工ネ効果に至るまでをきめ細かくで案内し，工場の一層の省エネ化 を実現します。
－インバータコンプレッサ㿥用による省工ネ効果
■高効率インバータ機の採用で大幅な省工ネを実現します。

油洨式コンブレッサ	アンローダタイプをインバータ機に置き換えることで省エネが図れます。
Kabelian	
出力 $7.5 \sim 150 \mathrm{~kW}$	
	蔄代結280万円／钾間間減 ＊75kWクラスで比較
水價射式オイルフリーコンブレッサ	アンローダタイプをインバータ機に置き換えることで省エネが図れます。
Emeravoe-Aqua	
	扫筫電力量約40\％ダウン
叶出し断 $0.69 \sim 0.59 \mathrm{MPa}$	

2段オイルフリーコンプレッサ採用による省エネ効果
■高効率2段圧絔構造の採用に加え，インバータ制御でさらなる省エネを実現。

オイルフリーインバータココブレッサ		インバータによる最適容量制御と一定圧制御で ハイレベルな省エネが図れます。
$4 \triangle$ EV Series		
	［70	
出力 65～270 ${ }^{\text {kW }}$		
		＊160kW

－嶚気馬駆動式エアコンプレッサ採用による省エネ効果

－蒸気エネルギーの有効活用により大幅な省エネを実現します。

	電動式コンプレッサを蒸気駆動式コンプレッサに置き換えることで省エネが図れます。
Kabelian－S $D_{\text {HRssums }}$	置き換えることで省エネが図れます。
出力 $37 \sim 75 \mathrm{~kW}$	
	電気代約650万円／年間胱澸

台数制御システムの採用による省エネ効果

複数のコンプレッサを使用する場合に，使用空気量の変化に応じて自動的に最適台数を選択し，運転することで省エネを実現します。部分負荷特性に憂れるインバータコンブレッサ，蒸気駆動式エアコンブレッサとの組み合わせ，低圧化，エア漏れ改善などで，その省工ネ性は飛䠰的に向上します。
■算出条件 標準機（SGシリーズ）…アンローダタイフ 運転時間…4500時間／年平均負荷率… 70% 蒸気条件…SDCが常時 100% 稼働が可能であること

〈油泠式スクリココンプレッサの場合（37kW×3台の場合）〉

