

それは いつも見えているとは限らない そしてまた いつも聞こえているとは限らない だからこそ大切なさまざまな「想い」というニーズ。 私たちは心の目と耳を真摯にかたむけ よりスピーディに よりたしかに 熱い心で応えます。

"Heart to Heart" は

つねにお客さまの視点からものごとをすすめる つまりマーケットオリエンテッドなビジネスを通じて 社会に貢献したいと願う私たちの コーポレートメッセージです。

⚠ 安全に関するご注意

●ご使用にあたって

- 1.ご使用に際して「取扱説明書」をよくお読みの上、正しく安全にご使用下さい。
- 2.弊社の製作範囲を無断で改造されますと、事故の原因となり危険です。絶対に行わないで下さい。
- 3.取扱気体は空気です。空気以外の圧縮には使用しないで下さい。事故や故障の原因となります。
- 4.圧縮空気を直接吸引したり、呼吸器系の機器に使用することは絶対に避けて下さい。呼吸障害を起こすおそれがあります。

●設置場所について

- 1.本機は屋内設置用として製作しています。屋外及び半屋外で使用することはできません。
- 2.可燃性ガス、爆発性ガス等を含んだ環境へ設置すると、電気火花等による引火で爆発するおそれがあります。
- 3.有毒ガス、腐食性ガス等を含んだ環境へ設置すると、潤滑剤の劣化や部品の腐食の原因となります。
- 4.密閉された場所に設置すると、吐出温度の上昇や機器類の寿命低下につながります。必ず吸排気口を設けて換気して下さい。

KOBELCO SCREWは、ISO9001 (国際標準化機構品質規格)、ISO14001 (国際標準化機構環境規格 認証取得工場で生産しています。

コベルコ・コンプレッサ紫紅

http://www.kobelco-comp.co.jp

. 〒141-0032 東京都品川区大崎1-6-4(新大崎勧業ビルディング16F) ☎ 03-5496-0011 (FAX.03-5496-0019)

■北海道·

北海道営業所 〒003-0869 札幌市白石区川下641-83

8011-873-8511 (FAX.011-873-8522) ■東 北-

東 北 支 店 〒980-0811 仙台市青葉区一番町1-2-25(仙台NSビル5F)

☎ 022-715-2670 (FAX.022-261-0762) ■北関東-

北関東支店 〒335-0031 埼玉県戸田市美女木4-11-13 **2** 048-449-7700 (FAX.048-422-6616)

新潟営業所 〒950-0087 新潟市中央区東大通2-4-10日本生命新潟ビル4F ☎ 025-246-8880 (FAX.025-246-8882) 栃木営業所 〒321-0945 宇都宮市宿郷2-7-8

☎ 028-633-5211 (FAX.028-637-2607)

■北 陸

静 岡 支 店 〒421-0117 静岡市駿河区下川原南7-17

つくば営業所 〒300-1286 茨城県牛久市小坂町2374-3

8 054-258-9111 (FAX.054-258-9102) 中部支店〒451-0045 名古屋市西区名駅2-27-8(名古屋ブライムセントラルタワー15F) 2 052-584-6088 (FAX.052-584-6080)

店 〒141-0032 東京都品川区大崎1-6-4(新大崎勧業ビルディング16F)

8 03-5496-0014 (FAX.03-5496-0018)

2029-830-9200 (FAX.029-875-1303)

8 055-220-6633 (FAX.03-5496-0018)

2076-445-1770 (FAX.076-441-0778)

山梨営業所 〒400-0031 山梨県甲府市丸の内2-12-15 (甲和ビル5F)

北陸営業所 〒930-0858 富山市牛島町18-7(アーバンプレイス8F)

近 畿 支 店 〒541-0051 大阪市中央区備後町4-1-3(御堂筋三井ビル4F) 206-6206-6088 (FAX.06-6206-6108)

中国支店〒730-0036広島県広島市中区袋町4-25明治安田生命広島ビル11階 ☎ 082-258-5325 (FAX.082-258-5327)

岡山営業所 〒700-0976 岡山県岡山市北区辰巳22-103 (TCKビル2F) ☎ 086-244-8622 (FAX.086-244-8624)

四国営業所 〒760-0017 高松市番町1-6-8 (高松興銀ビル5F) ☎ 087-823-1777 (FAX.087-823-3777)

九 州 支 店 〒811-0104 福岡県糟屋郡新宮町的野741-1 ☎ 092-941-2730 (FAX.092-941-2731)

遠隔監視センター 〒675-0155 兵庫県加古郡播磨町新島41 カスタマーサポートセンター **☎** 079-436-2182 (FAX.079-436-2109)

■お問い合わせは……

省エネルギー対策を通じて、 低炭素社会の実現に貢献します。

昨今、環境破壊がもたらした環境問題の一端である 地球温暖化を世界的な規模で食い止めるために、

さまざまな対策がとられています。

私たちコベルコグループは、空気圧縮機メーカーのパイオニアとして、

使用エネルギーを最小限に抑えるために、

さまざまな技術を確立してまいりました。

その技術をお客様に、より的確に生かしていただくため、

省エネ機器、システム全体の効率化など、

省エネルギーを図るための提案をさせていただきます。

お客様のエアシステムの省エネルギー対策を通じて、

省エネ・環境改善・低炭素化と社会への貢献をめざします。

エアシステムの 省エネ改善

使用電力・CO2の削減

コンプレッサの消費電力

コンプレッサは、他の設備に比べて非常に大量の電力を消費します。 そのため、コンプレッサの使用エネルギーを抑えることで、工場全体の省エネに大きく貢献します。

日本の総電力量の5%

現在、国内で使用されているコンプレッサの総消費電力は、国内で消費される総電力量の5%にあたります。コンプレッサの消費電力を10%削減すると、総電力量の約0.5%の削減につながります。

**参考: 2006年度の日本の総電力 量: 8,894億kWh (電気事業連合会 HPより) コンプレッサの総電力量: 約445億kWh

一般工場の総電力量の20~25%

一般工場設備におけるコンプレッサの消費電力量は、総使用量の20~25%にあたります。コンプレッサの電力を15%削減すると、総電力量の3~4%の削減につながります。

コンプレッサのランニングコスト

コンプレッサのランニングコストの 約80%が、電力コストです。

コンプレッサの省エネ対策

- ■相状の人々の削減
- 省エネ性能の高い機種の選定・更新・新設
- 定期的なメンテナンスによる性能の維持

- 最高の比動力費を求める運転システムの構築
- 低圧化、ムダな消費の削減による原単位の改善

〈計算条件〉油冷式75kW:6000h/年 15円kWh 10年間

コベルコの省エネ対策

コベルコは、コンプレッサ使用のお客様への省エネ対策として、省エネセミナー、省エネ診断、最新の省エネ機器・システムの提案などを実施しております。これにより、使用エネルギーを最小限に抑え、CO2削減、地球温暖化防止に貢献します。

「省エネ法」改正の概要

●「改正省エネ法」2013年5月31日公布 東日本大震災後の電力需給の逼迫に直面し、従来からのエネルギー 合理化の強化に加え、電力需給バランスを意識したエネルギー管理が求められています。また、エネルギー消費量 が特に大きく増加している業務・家庭部門において、住宅・建築物や設備機器の省エネ性能の向上といった対策を 強化する必要があり、こうした背景から省エネ法が改正されました。

●省エネ推進の流れ

1947年 ● 熱管理規制制定

1951年 熱管理法施行

1979年 ● 省エネルギー法 (省エネ法) 制定、施行

電気の取組み、判断基準、指定工場の創設、管理者設置、記録義務

1997年 ● 京都議定書採択

省エネ法改正

第一種業種制限の撤廃、全業種対象、第二種定期報告義務化、

第一種指定事業者の中長期計画書提出義務、 エネルギー管理士資格者の参画必要

2005年 ● 京都議定書発効

日本はCO2排出量を2012年までに1990年度比▲6%

2006年 4 省工ネ法改正 熱電気一体管理に変更

年平均1%以上の原単位低減実現に努力する

「新・国家エネルギー戦略」を公表

2030年までに、さらに30%エネルギー効率の改善を目指す

指定基準の改正、報告書等の提出単位の変更、 エネルギー管理統括者等の創設

2009年 🖢 温暖化ガス排出削減の中期目標発表

2020年時点対05年比で15%削減

2013年 🌢 省エネ法改正 電気需要の平準化の推進

~ップランナ**一**制度の建築材料等への拡大

2015年 トップランナーモータ規制開始 (4月)

● 改正の主なポイント

電気需要の平準化の推進

電力の需給バランスをはかるためには電力ピーク対策が重要な 課題となることから、電気需要の平準化の推進に関する措置 が加えられました。

①電気需要平準化評価原単位の設定

電気需要平準化時間帯に電気使用量を削減した場合、電気使用量を1.3倍して算出することにより、エネルギー消費原単位に比べて電気 使用量削減による原単位の変動が大きく評価されることになります。

エネルギー 消費原単位

電気需要 平準化 評価原単位

生産数量等 ネルギ**ー**の使用量に 密接な関係のある値

- ② 電気需要平準化時間帯の設定 (夏季:7~9月、冬季:12月~3月の8時~22時)
- ③ 工場等における電気の需要の平準化に資する措置に関する事業者の指針の策定

生産数量等

密接な関係のある値

エネルギ**ー**の使用量に[、]

トップランナー制度の建築材料等への拡大

トップランナー制度の対象として 「三相誘導電動機」と「電球形LEDランプ」を追加

建築材料のトップランナー制度の対象として、「断熱材」が 指定されました。

コンプレッサにも使われている「三相誘導電動機」がトップ ランナー制度の対象として新たに加わりました。

省エネ法の対象者及び義務・目標

エネルギー管理統括者(役員クラス) エネルギー管理企画推進者

●第一種管理指定工場:エネルギー管理者の選任 ●第二種管理指定工場:エネルギー管理員の選任

定期報告書、中長期計画書

中長期的にみて年平均1%以上のエネルギー消費原単位、 または電気需要平準化原単位の低減。

〈特定事業者の取り組むべき事項〉

- ●判断基準*1に定めた措置の実践(管理標準の設定、省エネ措置の実施等)
- 指針※2に定めた措置の実践(燃料点検、稼働時間の変更等)

特定事業者 年間エネルギー使用量1500kL/年度以上 Rネ┼ Α社 管理指定工場 3000kl ly 工場ごとの義務 エネルギー管理者の選任 エネルギー管理員の選任

※1:判断基準とは、エネルギーを使用して事業を行う事業者が、エネルギーの使用の合理化を適切かつ有効に実施するために必要な判断の基準となるべき事項を経済産業大臣が定め、告示として公表したものです。 ※2:指針とは、電気を使用して事業を行う事業者が、電気の需要の平準化に資する措置を適切かつ有効に実施するために取り組むべき措置を経済産業大臣が定め、告示として公表したものです

高い省エネ効果が期待されるトップランナーモータ

「トップランナー制度」とは省エネルギー基準を定める方式の一つであり、日本国内に出荷される製品 の省エネルギー基準を現在商品化されている最高のエネルギー消費効率以上に定める方式のことです。 モータにおいては2015年度からIEC規格におけるIE3レベルをトップランナー基準として適用し、 「省エネ法」の特定機器に追加されることとなりました。

● ①トップランナーモータの設定

産業用モータによる年間の消費電力量は、産業部門の消費電力量の約75%を占めると推計されており、多量のエネ ルギーを消費する機器となっています。また、国内で使用されているモータの97%がIE1(標準効率)レベルであり、 トップランナー化によりIE3 (プレミアム効率) に置き換えられたとすれば、極めて大きな省エネ効果が期待できます。

その他

〈モータの効率レベル〉

世界的な規格であるIEC規格(国際電気標準会議)で 規定されています。

IE1 …標準効率

IE2 … 高効率

·· プレミアム効率(トップランナーモータ)

我が国の全消費電力量 (約1兆kWh) 約45% 電力量

産業部門の消費電力量 (約4.850億kWh) その他 約25% **在問消**費

[出典: 資源エネルギー庁(2009年エネルギー消費機器実態等調査報告書) IAE-0919107]

■ ② モータ高効率化に関する主要各国の動向

モータ高効率化は世界的な流れで、主要な国々では遅くとも2017年頃までにはIE3レベルの効率が規制値として 求められる模様です。

〈各国における規制の時期と適用される効率クラス〉2013年9月現在

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
* 国	'97~EPAct:I EPAct (IE2) 規	ネルギ ー 政策法 制開始			一独立安全保障法 IA Premium (IE3)					
欧州 EU27					員会 エコデザイン IE2規制開始	要求事項		IE3 or IE2+イン '15/1~7.5kW以	バータ駆動規制開 (上	始 '17/1~0.75kW以上
韓 国	段階的にIE2規制	開始'08/7~45㎞	W以上	10/1~15kWl 10/7~0.75				段階的にIE3規制	開始 '15/1~37kW '16/1~15kW~37kW	
★ 中国	エネルギー効率 '07/7~ GB3	標識実施規則 級 (標準効率+α)		11/7-	√GB2級 (IE2+α) 12/9~新	規制開始 GB3級 (IE2) 規	制開始		段階的に業 16/9~7	iGB2級 (IE3) 規制開始 5kW以上 17/9~ 0.75kW以上
ブラジル			'09/12~IE2規	制開始						
日本						★特定機器指定	告示予定	'15/4~IE トップラン:	3での ナー規制開始予定	

IE2規制 IE3規制

■ ③対象範囲

出力	極数	電圧	周波数	使用の種類			
0.75~375kW	2極、4極、6極	10000以下	50Hz、60Hz、 50/60Hz	S1 (連続定格) または80%以上の 負荷時間を持つS3 (反復使用)			
【主な除外機種】 特殊絶縁、デルタスター始動方式、舶用モータ、液中モータ、防爆形モータ、ハイスリップモータ、ゲートモータ、キャンドモータ、極低温環境下で使用するもの、インバータ駆動専用設計で他力通風形のもの							

※注意事項:回転速度、始動電流、始動トルク等の特性が変わるため、同じ出力であってもブレーカのサイズ変更等が必要になる可能性があります。

お客様とともに、省エネ対策を推進

コベルコは、お客様に環境問題、省エネについてもっと知っていただくため、省エネに関する情報提供としての 「省エネセミナー| をはじめ、お客様の工場のエネルギー使用量などを調査する「省エネ診断 |、診断データに 基づき実際の機器・システムの導入にともなう「省エネ改善」など、お客様の工場全体の省エネ対策のお役に 立てるよう、窓口商社やサービス指定工場と一体となった体制を整えております。

コンプレッサの省エネに 必要な取り組み

情報 収集

関係法規の理解

省エネ改善に対する 技術の習得

管理標準 の作成

管理指標の作成と 定期的な保守 及び占給の宝施

現状 把握

■ムダ・ロスの発見

コンプレッサの 時間ごとのエネルギー 使用量の把握

エネルギー消費の ムダをチェックし 改善効果を検討

改善の

消費側(末端)設備の 見直しと低圧化 ●エア漏れの改善

●省エネコンプレッサへの更新 台数制御システムの導入 など

コベルコの取り組み

省エネに関する情報提供

省エネ改善提案 「省エネセミナー」の実施

コンプレッサ管理知識の提供 省エネ改善提案

省エネ診断の実施

コンプレッサの運転・稼働状況 ライン圧力、末端圧力測定 エア漏れ量測定

具体的な改善提案

省エネ診断に基づく 省エネ改善マスタープラン作成 省エネ効果シミュレーションの提示

省エネ製品の提供

最適省エネ機器. ソリューションの提供

情報提供

省エネセミナーの開催

お客様からのご要望により、全国各地で、コベルコ窓口商社やサービス指定工場による「省エネセミナー」を開催しており ます。さまざまな資料を用いて、環境問題、環境関連法規、工場の具体的な省エネ対策など、幅広くご説明いたします。

■ 省エネセミナーの内容

- 現状省エネ法の解説及び将来の展望
- ●省エネ改善実施のための組織の構築
- ●現状把握手法
- ●ムダなエネルギー消費の顕在化
- ●具体的な改善手法
- 改善効果の算出方法
- 改善に必要な空圧の専門知識の解説

■ 省エネセミナーの実績 (~2013年度)

- ●セミナー開催
 - ·約850回
- ●セミナー受講者
- ……約30.000名
- 特定ユーザーの省エネ 改善指導……約270社

現状把握

お客様の工場の生産ライン・設備の運用状況を確認してください

コンプレッサに関わる 判断基準

- 1) 管理:使用端圧力及び吐出量の見直しを行い、管理標準を設定し、電動機の負荷を低減する。
- 2) 保守及び点検: 流体の漏えいを防止し、抵抗を低減するように保守及び点検に関する管理標準 を設定し、これに基づき定期的に保守及び点検を行う。

● 管理標準の作成、管理の実践に役立つ基礎知識

●供給圧力の低圧化

コンプレッサの供給圧力を下げる事 により、動力を削減することが可能 です。また、低圧化により配管からの 空気の漏れ量も削減できます。

■ノズルから噴出する空気量(単位:NL/min)

L	ノズル径 (mm)								
ゲージ圧力	0.2	0.4	0.6	0.8	1.0				
0.49MPa	1.87	8.10	12.46	31.14	49.20				
0.59MPa	2.18	9.44	14.52	36.30	57.35				
0.69MPa	2.49	10.78	16.58	41.46	65.51				
0.79MPa	2.80	12.12	18.65	46.62	73.66				

●配管の適正化

配管サイズの見直し、ループ化等により、圧力損失を削減し、 空気の安定供給が可能になります。

■ 空気配管径選定例

配管	А	15	20	25	40	50	65	80	100
サイズ	В	1/2	3/4	1	11/2	2	21/2	3	4
経済 配管	流量 Nm³/min	0.5	1.0	1.5	4.0	7.0	13	20	30
	⊿P/100m	0.038	0.032	0.021	0.017	0.014	0.014	0.013	0.007
最大流量	流量 Nm³/min	1.8	3.1	5.2	11	15.4	22.3	31.4	53.5
//儿里	⊿P/100m	0.431	0.284	0.210	0.106	0.063	0.035	0.028	0.026

△P=100m当たり圧力損失MPa 叶出圧力=0.6MPa

●メンテナンスの適正管理

メンテナンス基準を超過した部品は、 口スを発生させ余計な動力を消費します。 メンテナンスを適正に管理実施すること により省エネを図ることができます。

■ 消耗部品劣化により発生するムダな電気代

■吸込フィルタの目詰まり

空気量が減り無駄な動力を消費します。

吸込フィルタの目詰まりにより、

■オイルセパレータエレメントの目詰まり オイルセパレータエレメントの目詰まりにより、 差圧が増え無駄な動力を消費します。

圧力損失により発生する電力 <=> 電気代(月) ¥91500 -¥43,000 ¥21,000 ¥34,000 0.17 圧力損失 (MPa)

油冷式75kW実機によるテストデータ 計算条件 稼動時間:500hr/月 電気料金:¥15/kWh

現状把握から具体的な改善方法までトータルにサポート

効果的な省エネ推進には、まず現状をしっかり把握すること。そして具体的な対策を立て、実践することが必要 です。コベルコはお客様のご要望に応じて、効果的な省エネ改善を提案します。

現状把握

省エネ改善提案

省エネ改善の実践

診断メニュー

お客様のニーズに応じた3つの診断メニューをご用意

クイック診断

〈1台のコンプレッサ〉

1台のコンプレッサを簡易に診断 します。測定・解析・レポート作成 まで、最短1日で可能です。

ベーシック診断

〈複数台のコンプレッサ〉

複数台のコンプレッサを3~5日程度 測定。そのデータを解析し、省エネ 改善レポートを作成します。

エアシステム診断

〈工場全体のエアシステム〉

コンプレッサだけでなく、ライン圧力・ タンク圧力など工場全体のエア消費を 測定。そのデータを解析し、省エネ 改善レポートを作成します。

メーカーや圧縮方式を問わず 測定が可能

製造メーカー、給油式・オイルフリー式、圧縮 方式 (スクリュ・レシプロ・ターボ) を問わず、 さまざまな仕様のコンプレッサを測定・診断 することができます。

コンプレッサの負荷状況を 直接測定[特許]★

データ測定は、各コンプレッサの負荷状況 を直接測定する精度の高い方法を採用して

すべての機器を全機同時測定★

各コンプレッサ·レシーバタンク·エアライン などのデータを同一時刻にリアルタイムに 測定できます。この全機同時測定はコベルコ だけの特長で、測定にタイムラグがなく、 正確な診断結果が得られます。

★クイック診断を除く

● 省エネ診断の流れ

STEP1

診断のお申込み 弊社営業担当者またはホーム

STEP2

事前打合せと現地調査 弊社担当者がお伺いし、現地調 を確認し、る

STEP3

診断内容に従い、各種データ います。

診断の実施

STEP4 STEP5

データ解析と報告書作成 結果報告とご提案 収集したデータを解析し、省

省エネマスタープランに基づい て省エネ改善提案をご 説明します。

→ STEP6 改善フォロー

省エネ機器の導入、設置など、

省エネプラン

エネルギー使用状況を「見える化」し、分かりやすく効果的に省エネを提案

測定データを解析し、現状を正しく把握。お客様ニーズに対応した省エネマスタープランを具体的に提案させていただきます。

■ 省エネ改善シミュレーション例

全機同時測定による、正確なデータに基づく省エネ改善シミュレーションで、省エネ 効果を具体的に提案させて頂きます。

〈省エネシミュレーション(例)〉

	消費	現状運転時				シミュレーション時					
時 刻 空気量		各機負荷率 %			電力量	力量 各機負荷率 %				電力量	
	(m²/min)	No.1号機	No.2号機	No.3号機	No.4号機	(kW)	No.1号機	No.2号機	No.3号機	No.4号機	(kW)
19:10	57.0	58	79	61	0	83.0	100	0	0	91	65.3
19:20	55.6	57	76	60	0	82.6	100	0	0	87	64.4
19:30	55.0	57	75	59	0	82.3	100	0	0	85	64.0
19:40	55.3	57	76	59	0	82.5	100	0	0	86	64.2
:	:	:	:	:	:		:	:	:	:	-
4台のコンプレッサの負荷状況を同時測定										Î	
						1					

省エネ効果=①(現在の消費電力) - ②(シミュレーション時の消費電力)

■ 省エネ効果例

精密機械メーカー A社様

コベルコ油冷式スクリュコンプレッサ6台使用。 実測データに基づきVS1310W (インバータ機) + 台数制御盤を導入した場合のシミュレーション。

年間で

額:¥5,940,000

CO2削減量: 329.7ton の省エネ効果

(電気代を¥10/kWh、年間稼働日数を330日と仮定)

液晶画面メーカー B社様

他社オイルフリースクリュコンプレッサ5台使用。 実測データに基づき、古くなった90kW×2台を ALE160W-v(インバータ機)にリプレースし、 さらに台数制御盤を導入した場合のシミュレー ション。

年間で

額:¥11,000,000 CO2削減量: 610.5tonの省エネ効果

(電気代を¥10/kWh、年間稼働日数を342日と仮定)

診断実績

多様な業種から多彩な機種まできめ細かな診断と改善提案を行います

〈コベルコの省エネ診断〉は、診断実績もNo.1! (2014年3月までの実績)

実績社数

3,801社

測定圧縮機台数

15,385台

削減提案

540,000MWh (CO2削減量: 300,000ton)

〈省エネ診断実績例〉

業種	主要生産品	測定内容	提案内容	削減提案			
未催		规处的台	延来内台	電力 (kWh/年)	電気料金 (¥/年)	CO2削減量 (t/年)	
美術工芸	陶器	スクリュ給油式 15kW×1台	インバータ機の 導入	35,579	533,685	19.7	
精密機器	IT 関連機器	スクリュ給油式 37kW他×9台	レシーバタンク+ 台数制御盤の導入	521,000	5,731,000	237.1	

		業種 主要 生産品		測定内容	提案内容	削減提案			
F)				MICHI	ルボバガ	電力 (kWh/年)	電気料金 (¥/年)	CO2削減量 (t/年)	
		御品	飲料水	スクリュオイルフリー 37kW×6台	台数制御盤の導入	156,908	1,725,993	58.8	
		自動車	自動車部品工場	ターボオイルフリー 480kW他×6台 レシプロオイルフリー 175kW他×4台	ターボ機を ベース運転としての インバータ機+ 台数制御盤の導入	3,361,000	36,971,000	1529.3	

最適省エネ機器・システムの提供

省エネ診断によって明らかになったエネルギーのムダは、新たな省エネ機器の導入と、それらの機器を活かす システムによって解消できます。コベルコでは、各種コンプレッサや台数制御機器など、省エネのための最適機器と システムを提案。その具体的な使い方から省エネ効果に至るまでをきめ細かくご案内し、工場の一層の省エネ化 を実現します。

✓ インバータコンプレッサ採用による省エネ効果

■高効率インバータ機の採用で大幅な省エネを実現します。

アンローダタイプをインバータ機に 置き換えることで省エネが図れます。

消費電力量 約49% ダウン

coa剛減効果約105t/年間削減

電気代約280万円/年間削減

0.69~0.59MPa

3.7~9.7_{m³/min}

アンローダタイプをインバータ機に 置き換えることで省エネが図れます。

消費電力量約40%ダウン

COe削減効果約50t/年間削減

電気代約 140万円/年間削減

*37kWクラスで比較

■ 2段オイルフリーコンプレッサ採用による省エネ効果

■高効率2段圧縮構造の採用に加え、インバータ制御でさらなる省エネを実現。

インバータによる最適容量制御と一定圧制御で ハイレベルな省エネが図れます。

消費電力量約7%ダウン

CO2削減効果約40t/年間削減

電気代約100万円/年間削減

*160kWクラスで比較

*平均負荷率50%、稼動時間6,000時間/年、電気料金15円/kWh、CO2係数0.555kg-CO2/kWhで算出しています。

■ 蒸気駆動式エアコンプレッサ採用による省エネ効果

■蒸気エネルギーの有効活用により大幅な省エネを実現します。

電動式コンプレッサを蒸気駆動式コンプレッサに 置き換えることで省エネが図れます。

ランニングコスト約85%ダウン

COENIXM 約250t/年間削減

電気代約650万円/年間削減

*75kW電動コンプレッサと比較

*負荷率100%、稼動時間6,000時間/年、電気料金15円/kWh, CO2係数0,555kg-CO2/kWhで算出しています。

■ 台数制御システムの採用による省エネ効果

複数のコンプレッサを使用する場合に、使用空気量の変化に応じて自動的に最適台数を選択し、運転することで省エネを 実現します。部分負荷特性に優れるインバータコンプレッサ、蒸気駆動式エアコンプレッサとの組み合わせ、低圧化、エア漏れ 改善などで、その省エネ性は飛躍的に向上します。

■ 算出条件 標準機 (SGシリーズ) …アンローダタイプ 運転時間 … 4500時間/年

平均負荷率…70%

蒸気条件 … SDCが常時100%稼働が可能であること

〈油冷式スクリュコンプレッサの場合(37kW×3台の場合)〉

■制御モデル図

遠隔監視システム採用による エネルギー監視・省エネ改善

コンプレッサの遠隔監視システムは、お使いの コンプレッサの運転データを自動的に収集し、 傾向監視によりコンプレッサの適正な運転ができ ます。また、お使いのコンプレッサを集中管理 しますので、運転保守が容易になります。

使用空気量の変化に応じて自動的に最適台数を 選択・制御することができます。(オプション)

運転保守管理の簡略化

省エネ改善提案

4 巡回サービス